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New eigenvalue bounds are derived for the linear stability of inviscid parallel 
flows, both for homogeneous and for stratified fluids. The usefulness of these 
bounds, as compared with that of previous results, is assessed for several ex- 
amples. For homogeneous fluids the new upper bounds for the imaginary part 
c, of the complex phase velocity are sometimes better than previous criteria. 
For both homogeneous and stratified flows, the new upper bounds for the wave- 
number a of neutrally stable disturbances improve on previous results, giving 
values within 10 yo of the known exact solution in several cases. 

1. Introduction 
Rayleigh‘s equation governing the linear stability of inviscid parallel flows is 

(5--c)($”-a2$)-Z”q!J = 0,  (1.1) 

where U ( z )  is the primary velocity profile, primes denote dldx, a is the wave- 
number and c = c,. + ic, is the complex phase velocity of a small wavelike dis- 
turbance with stream function of the form @ = $(z )  eia(z-ct). If the flow is confhed 
by plane boundaries situated at x = a and z = b the appropriate boundary con- 
ditions are $(a) = $(b)  = 0. These boundary conditions and equation (1.1) define 
a complex eigerivalue problem for c as a function of a (or vice versa), given the 
velocity distribution %(z). I n  particular, if c, > 0 for some positive a, the flow 
is unstable while, if ci < 0 for all positive a, the flow is stable. In  fact, the Rayleigh 
equation is a valid approximation only for ci 2 0, so any results deduced from 
this equation vill apply only to unstable or neutrally stable disturbances (see 
Lin 1955, $8). 

It is instructive to seek general results which yield bounds for c, particularly 
since max (aci) is the largest temporal growth rate of a wavelike disturbance. 

A number of such results have been derived previously (see Drazin & Howard 
1966), the most’ important being the following: 

a 

(i) If ci > 0, Ti” must change sign somewhere in [a, b] .  
(ii) Fjnrrtoft’,~ criterion. If c, > 0, then U”(x)  [Z(z) -Us] < 0 somewhere in the 

field of flow, where x, is a point at which ;li”(z) vanishes and 5, = Z(z8). In  partic- 
ular, if ci > 0 and if U ( z )  is monotonic and U ” ( x )  vanishes once only in [a,b], 
then the inequality 

must hold for a l l  x in [a, b]. 
zcf’(z) [Z(z) -EJ  < 0 
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(iii) Semicircle theorem. If ci > 0, 

[~ , -$ (zmax+zmin) ]~  +c: < [+(5max-Emin)12. 

(iv) Hlailand's criterion. 

(v) If 5" = 0 when 

aci < 4 max 131. 

= Us and if K(z)  E - #/(5 - 5,) 2 0 throughout the flow, 
there is no solution with ci > 0 when 

the maximum being with respect to functions 4 which vanish at a and b and 
which have square-integrable derivatives. This criterion yields an upper bound 
for the wavenumbers at which unstable disturbances may arise. Further, by 
virtue of the integral inequality 

it follows that there can be no unstable disturbance with 

a2 > rnax {K)  - n2/(b - 
U 

clearly, the flow must be stable when the boundaries are sufficiently close for 
the right-hand side to be negative. 

(vi) A result which has apparently not been stated previously, but which is 

I 

easy to prove, is 

It follows from the relationship 

For, since the left-hand side is real, we must have 

and the result is obtained on invoking the above integral inequality. A result 
of Sattinger (1967), that 

(urnax - Emin) max JE" 1 1 4  

ci < 1 a2++(b-i)-2 J ' 

is less strong than the bound just derived, as may be seen on squaring and using 
the result from (iii) that ci < +(%,, - Urnin). 

(vii) For flows such that G"/(5 - d )  6 0 everywhere for some real number d, 
Drazin & Howard (1962) have shown that ci > 0 only if 

- 

(vii a) 
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and, for unboun-ded flows only, that ci > 0 only if 

a3 < ’/= [U”/(U-d)]2dz 
4 - w  

(vii b) 

(provided Ti and d are such that the respective integrals exist). 
The present paper concerns the derivation of further eigenvalue bounds 

which, as is demonstrated by several examples, are sometimes better than those 
stated above. In addition, corresponding results for stratified flows are discussed. 

2. An integral inequality 
The Rayleigh equation and boundary conditions may be re-expressed as 

Z“ 
w E $’’-$$ = 7 $7 $(a) = $(b) = 0, u - c  

where o ( z )  is related to the perturbation vorticity. We now seek to express q5 
in terms of w ,  by means of a suitable Green’s function C(z, z’),  as 

$(z)  = s p o ( z ’ )  G(z,  2’) dz’. 

When a and b are finite it can readily be found that 

a 

(2.1) 

sinh a@’ - a)  sinh a(z - b) 
asinha(b-a) 

sinh a(z - a)  sinh a(z’ - b) 
a sinh a ( b  - a )  

(a  < z‘ < z < b), 

(a < z < z‘ < b). 
G(z,z’) = 

Also, if a = - z, and b = 00, that is, if the flow is of unbounded extent, 

(2.2) I ( - I/%) ea(z‘-z) ( - co < z’ < z < 00), r ( - i/2a) ea(z-2’) ( - 00 < z < z’ < 00). ~G(z,z’)  = 

Further, for semi-infinite flows with a = 0 and b = co 

I ( -  i /a) e-@Zsinhaz’ 

( - l / a )  e-az’sinh az 
(0 < z’ c x < m), 

(0 < z < z’ < CO). 
cqz ,  2 ’ )  = 

The Rayleigh equation and boundary conditions may then be expressed as 
the integral equation 

o ( z )  = - 

Suppose now that w(z )  belongs to the space of complex-valued functions LJa, b] 
such that 

I l f l l ,  = (/bIf(z)l-)l’p < (P 2 I), 

the integral being in the Lebesgue sense. From (2.4), 

42-2 
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Invoking the Holder inequality 

with t =:z’, X = W ,  Y = [U”(z) / (U(z)  - c ) ]  G(z, z ’ ) ,  

and recalling that G(z, 2’ )  < 0 for all z and z’ in [a, b] ,  we have 

On cancelling jlwllp, this yields the inequality 

That is to say, given U ( z ) ,  this inequality is satisfied by the complex eigenvalues 
c(a) associated with all eigenfunctions for which w(z)  is in the space LJa,  b] .  

We now investigate the conditions under which w is in L,[a,b]. It seems 
reasonable to assume that, for most eigenfunctions of interest, w(z)  will be in 
L,[a, b] for at  least some value of s 3 1.  If this is so, the function 

J: G(z, z’) w(z‘) dz‘ 

is bounded and continuous. If we also suppose that U“/(G-c) is in the space 
LJa,  b] it follows from (2.4) that w is also in LJa ,  b], since the product of an L, 
function and a bounded continuous function is also in Lp space. Accordingly, we 
have shown that, if w is in LJa,  b] for some s 2 1 and if U“/(U-  c )  is in LJa,  b] ,  
then w is also in LJa,  b].  

This result may be strengthened to allow w and U“/(U - c) t o  contain a linear 
combination of delta functions, with the integrals appropriately interpreted. 
For, if we suppose w to be of the form 

where the integer N and the constants An are finite and f, is in Ls[a, b] for some 
s 3 1, the expression (2.6) is again bounded and continuous. Hence, if U”/(U- c )  
is of the form 

N‘ 

n = l  
fp(z)+ C B n S ( z - z n ) ,  

with the integer N’ and the constants Bn finite and f, in LP[a, b] ,  then so also 
is w .  

If V / ( U  - c )  does not belong to the class of functions described above the left- 
hand side of (2 .5 )  is unbounded and the inequality is automatically satisfied. 
The inequality (2.5) therefore holds subject only to a very weak assumption 
concerning the permissible eigenfunctions: namely, that o is of the form (2.7) 
for at  least one s 3 I. If w were not of this form, the right-hand side of (2.4) would 
be meaningless in any case. 
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3. The adjoint equation 
The equation 

(U - c) (9‘‘ - a24) + 2 2 4 ‘  = 0 

661 

(3.1) 
and boundary conditions 

define the eigenvalue problem adjoint to that discussed above. Accordingly, 
the eigenvalues for the two problems are identical, and we may proceed as 
above, but using equation (3.1) instead of (l.l),  to derive another integral in- 
equality of interest. Now, we wish to express #’ in terms of w ,  by means of a 
suitable Green’x function H(z ,  x ’ ) ,  as 

$(a)  = # ( b )  = 0 

& ( x )  = j; w(z’)  H(z ,  2’) dz’. 

With a and b finite, we find 

sinh a(z’ -a) cosh a(z - b )  
sinh a(b - a )  

sinh a(z‘ - b)  cosh a(z - a )  
sinh cc(b - a )  

(a 6 2’ < x < b ) ,  

J ( a  6 x < x’ < b) ,  
H(x,z’)  = 

while with a = .-co and b = 00 

I 1 -  - &$-Z-z’) (-co < 2 < 2’ < co), 

I 

iea(z’--Z) (--co < z’ < z < co), 
H(2,z ’ )  = 

and, with a = 0 and b = co, 

e-azsinhaz‘ (0  < z‘ < z < co), 
{ - e-as‘ coshccz (0 < z < z‘ < 00). 

H(x , z ‘ )  = 

By a similar argument to that used above, we obtain the inequality 

(3.3) 

(3.4) 

which is valid under a similarly weak condition concerning the form of o. 

4. The eigenvalue bounds 

When a = - 00 and b = co the Green’s function G(z, 2’) is of the form (2.2) and 

Unbounded $.ws 

a result independent of the value of x .  In  this case, inequality (2.5) becomes 
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on setting q-l equal to 1 -p-l. A fortiori, this yields an upper bound for ci, the 
imaginary part of c ,  namely 

( 4 . 1 ~ )  

We recall that these results hold for all p in the range 1 < p < co, the case p = m 
yielding 1 

Similarly, for the adjoint equation, 

--m 

from (3.3), and the inequality (3.5) becomes 

or, a fortiori, ( 4 . 2 ~ )  

Thus we have derived two families of eigenvalue bounds: (4.1) and (4.2). For 
a particular velocity profile, a search may be made using these for that value 
of p which yields the strongest result. Some illustrations of this are given in Q 5. 

Semi-inJnit e flows 

With a = 0 and b = co, the appropriate Green’s function G(z,z ’ )  is (2.3) and it is 
readily shown that 

for all q > 0 and all x in the range 0 < x < 00. Similarly, it  is found that, with 
H(z ,  z ’ )  given by (3.4), 

The inequalities (2.5) and (3.5) then yield the bounds 

7 (4.4) 

which are analogous to those above. 
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Bounded Jlows 

When a and b are finite, with b > a ,  G(z,z ' )  and H(z,z ' )  are given by (2.1) and 
(3.2) respectively. Then, 

(lsinh a(z - b)Ip/uz lsinh a(z' - a) Iq dz' + lsinh a(z - a)lP lsinh a(b - z')Iqdz' 
- - 

a sinh a(b - a )  

< (2~~-u ) s inhqa~d[ ) "q /2a  cosh -a)]  

and 

(I cosh a(z - b)  Iq!: lsinh a(z' - a)lqdz' + I cosh a(z - a )  Iq lsinh a(b - z ' )  Igdz' 
- - 

sinh a(b - a )  

The inequalities (2.5) and (3.5) therefore give 

5. Wavenumber bounds 
With velocity profiles T i ( % )  for which U"(x)  vanishes when 5 = Tis ,  there exists 

a neutral mode with ci = 0 and c,. = Z,, occurring at the wavenumber as defined 
in 0 1 (v). If, adso, K(z)  = -U"/(U-E,) > 0 throughout the flow, there are no 
unstable solutions (ci > 0) of (1.1) for which a > a,. (The latter result is that 
stated in 0 I (v). For proofs of both the above statements see Drazin & Howard 
(1966, pp. 12-14).) However, for given K(z) ,  the expression (v) for a, is not 
readily evaluated, since it involves maximizing over the class of functions $ 
which vanish at  the boundaries and which have square-integrable derivatives. 
For this reason it is of value to have upper bounds for a, which are more amenable 
to calculation :for velocity profiles of interest. One such bound may be deduced 
from result (v)' in Q 1, namely, a: < max (K)-$/(b -a)z. The inequalities (4.1)- 
(4.6) above give other such bounds. 

To avoid possible misunderstanding it seems worth stating that, if K(z)  2 0 
throughout the flow, the bounds to be derived yield values above which there are 



664 A .  D. D. Craik 

no wavenumbers a corresponding to unstable solutions. However, if K(z)  < 0 
somewhere in the flow, the bounds apply only to the neutral mode. That is, they 
give values above which there are no wavenumbers a corresponding to neutral 
solutions with c, = Ti, and ci = 0; the possibility of neutral or unstable solutions 
with other values of c, then remains. 

The bounds in question are obtained immediately, by setting c = Es and a = a, 
in results (4.1)-(4.6). With K(z)  = -E”/(;ii-E,) and L(z) = E’/(E-Ti,), they may 
be written as follows, with 1 < p < co. 

Unbounded flows 

(5.192) 
Semi-inJinite flows 

(5.3,4) 
Bounded flows 

sinh [$a# - a)]  
sinhqa,gd[) 1ln ’ 

with l / q  = 1 - 1/p. 

d’ 6. Examples 
In  order to demonstrate the values of the above bounds, as compared with 

those described in $1 ,  a number of examples are examined. For some of these, 
the exact solution of the stability problem is known; it is then possible to see 
just how good - or bad - all these bounds are. 

(a )  For the flow 
1 +A(z/a-  1) (a  < z < 00)) 

U ( z )  = x/a (1x1 < a)’ i - l + A ( x / a + l )  (-co < z < -a) ,  

with U”(z )  defined as A[6(z-a)-6(x+a)] ,  where 6(z )  denotes the Dirac delta 
function and h and a are constants, only one of the criteria stated in $ 1 yields 
a non-trivial result. This is Hgiland’s criterion (iv), which gives 

(provided 2 is suitably defined at  z = & a) .  Of the bounds derived above for ct, 
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one also yields a non-trivial result. This is (4.1 a )  with p = 1, which gives 

aci < 11 -A]/., 

a result better than Hsiland's when 8 < h < 2. 
(b)  When 

lU"l = (1+22)-9 (0 < I21 < Go), 

a corresponding family of velocity profiles is 

- l+zsinh-lz-(x2+1)9+bx (0 < x < co), 
u =  { 

~[1+zs inh-~x- (x2+1)~]+bz  ( -00  < x c 0) ,  

where G'(0) = b is constant, Z" > 0 for x > 0, and the k sign is taken so as to 
agree with the sign of U" for z < 0. Criterion (ii) of $1 shows that, if Z" < 0 for 
x < 0 and 6'' is dejned as zero at x = 0, then no unstable disturbance is possible 
whenb 2 0. 

For b < 0, the only criterion of § 1 which applies is (vi), giving c, < (2a9-l. 
On the other hand, result (4.1 a)  yields finite bounds for all p greater than unity. 
The case p = co gives c, < a-2, which is less good than (vi), but for all other cases 
with p > 1 our result is better than (vi) for sufficiently small a, since the power 
of a in ( 4 . 1 ~ )  exceeds - 2 for all finite p > 1. These bounds are 

where B[u,v]  denotes the Beta function. For example, with p = 2,  we have 
ci < n*/2a%, which is better than (vi) whenever a < r-l. For given a, the best 
bound may be :found by plotting the right-hand side as a function of p to locate 
the minimum. With sufficiently small values of a the optimum value of p will 
be close to (but greater than) unity, while, if a is very large, criterion (vi) will 
give the best available bound. 

(c) The anti-symmetric profile 

has 5' = [214/(1+ 1x1).  

Criteria (iii) an.d (v)' here yield only trivial results, but (iv) gives ci < $a-1. 
Result (4.1~~) yields non-trivial results for 1 Q p < 2, when the bounds for ci 
are proportional to powers of a in the range a-l to a-8. These bounds will therefore 
improve upon (iv) for a sufficiently large. On the other hand, result ( 4 . 2 ~ )  with 
2 < p < 00 yields bounds for ci which will improve upon (iv) for a sufficienbly 
small, the range of powers of a being a-4 to a-l. These latter bounds are 

For instance, with p = 3, the bound is ($r)%a-+, which is better than (iv) for 
a < 3/(256n). 
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( d )  For the Bickley jet 
- 
u = sech2z (-a < z < a), 

there are two neutral modes with c, = 8-one sinuous, the other varicose- 
occurring at a = 2 and 1 respectively. Corresponding values of c,, ei and a for 
the sinuous and varicose modes are tabulated by Drazin & Howard (1966, p. 41). 
In  this case, the criteria (iii), (iv) and (vi) of $ I give 

ci 6 4, ci < ( 2 / 3 4 3 ) a - l ,  ci < aU2 

respectively. It turns out that, although the bounds for ci obtained from (4.1 a)  
and (4.2a) may be better than one or two of these results for particular values of CL 

and p, they are never better than all three: that is to say, the bounds ( 4 . 1 ~ )  
and ( 4 . 2 ~ )  for ci do not improve upon the criteria of $1 for this velocity profile. 

Nevertheless, the wavenumber bounds of $ 5 do yield new results. Criterion 
( v ) ~  of $ 1 shows that there are no unstable disturbances with a2 > 6 and this 
result is reproduced by (5.1) withp = co. Also, from result (viia) of § 1, Drazin & 
Howard (1962) showed that there are no unstable disturbances with a 2 2.29 
for this profile; (5.1) reproduces this result whenp = 2 .  Result (5.2) yields nothing 
of interest, but improved bounds are obtained from (5.1) with p finite. Letting 
a, denote the wavenumber above which no unstable disturbance can occur, 

the sharpest result occurring at about p = 3.5, when a, = 2.191. This is quite 
close to the exact solution a = 2.0 for the sinuous neutral mode. 

Since the eigenfunction #(z )  for the varicose mode must vanish at z = 0, 
upper bounds for the wavenumber of this neutral mode are given by (5 .3) ,  
since the problem is identical to that for a fluid bounded at  x = 0. Denoting 
these bounds by a2, it is readiIy seen that 

a2 = al(*)l/(2P-1), 

with a1 given above. The best results are forp between 1.5 and 2, when a2 N 1.82. 
Since the exact solution is a = 1.0 this bound is much less sharp than that for 
the sinuous mode. 

(e) The inviscid stability of the shear layer 

;il=tanhz ( - c o < z < c o )  

has been determined by Michalke (I964), the neutral mode at the stability 
boundary having c, = 0 and a = 1. Again, the criteria (iii), (iv) and (vi) of $ 1, 
taken together, are better than the bounds for ci given by ( 4 . 1 ~ ~ )  and ( 4 . 2 ~ ) .  

On setting U, = 0,  criterion ( v ) ~  shows that there is no unstable disturbance 
with a greater than 4 2 ,  as does result (5.1) when p = 00. For finite p ,  (5.1) 
improves on this bound, the wavenumber a3 above which no unstable disturbance 
can exist being given by 

a - (1 Pl(2P-1)a1,  3 - 3) 
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FIGURE I.  Eigewvalue bounds for zi = tanh z and Michalke’s exact solution. 
(iii)-(vi) denote the criteria thus designated in $1. That labelled (6.2) 
equation (6.2). 
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Curves labelled 
corresponds to 

where a, is defined in (6.1). The smallest value of cx3 occurs close to p = 1.9, 
when a3 = 1.10. This compares well with the exact solution a = 1.0 (as also 
does (viib) of 0 1 since it corresponds to p = 2). 

For the present anti-symmetric profile, still better bounds for ci can be de- 
rived directly from (4.1), since it is known that c, remains zero when ci + 0 
(see Tatsumi 8;; Gotoh 1960). On setting c equal to ici in (4.1), the integral may 
be evaluated directly for the case p = 2 (which is close to the best result when 
ci = 0 )  to give the inequality 

(6.2) 

The curve of a4 against ci is shown in figure 1, together with Michalke’s exact 
solution and the bounds given by (iii), (iv), (v)‘ and (vi) of Q 1. It is seen that 
a considerable improvement is obtained over the bounds of fj 1. 

a < a, = 29[cf + 8 - ca( 1 + ct) cot-1 c$. 

7. Eigenvalue bounds for stratified flow 

scribed by the eigenvalue problem 
For incompressible inviscid flow of variable density p(z) ,  instability is de- 

(U - c )  (9’’ -a”) -Ef t$  + J ( z )  $/(U - c)  = 0, 

$(a) = $(b)  = 0, 

provided the :Boussinesq approximation is justified. Here J ( z )  = - Pgp‘/p V2, 

where I and V are characteristic length and velocity scales respectively, g is 
gravitational a*cceleration and z is measured vertically upwards. For this situa- 
tion, the semicircle theorem (iii) remains valid provided J 2 0 everywhere. 
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Further bounds on ci, due to Synge and Howard respectively, are 

ci 6 max (2J/u"), a2ct 6 max (&Z2 - J) (7.1Y.2) 
z I 

(see Drazin & Howard (1966, 9 5 )  for details). 
Additional bounds may be derived by following the procedure of $8 3-5 above, 

but with U" replaced by 5" - J / ( U  - c )  throughout. For example, with unbounded 
flows, the result analogous to (4.1) is 

and, since by Minkowski's inequality the left-hand side is less than 

~~~ll~"ll,t-c,~jlJl~~ for ci > 0, 

However, this family of bounds for ci appears to be rather weak, since they take 
no account of whether the stratification is stable or unstable. 

Results of somewhat more interest may be derived for the neutral mode with 
c, = Us, ci = 0 and a = a,. Upper bounds for as corresponding to (5.1) are 

However, the present bounds apply only t o  the neutral mode (see Howard 1963), 
and no conclusions can be drawn concerning the existence of unstable dis- 
turbances. 

For many cases of interest, the left-hand side of (7.5) is unbounded for all 
values of p-this happens, for example, whenever Iu -us/ and J remain finite 
as z -+ & co - but this difficulty is not encountered in the corresponding results 
for bounded flow, which are obtained from (4.5) on replacing ZL" by ;iz" - J/(S- c ) .  
Examples for which (7 .5 )  yields non-trivial bounds are examined in the next 
section. 

8. Examples for stratified flow 
We shall demonstrate only result (7.5) for two cases. 
(f) The case 

7 = sechztanhz, J = J,sech2ztanh2x ( - 0 0  < z 6 00) 

has apparently not been studied previously. Nevertheless, it has simple solutions, 
corresponding to neutral varicose and sinuous modes. These are 

$1 = sech2z, a' = J0+3, c = 0, 

q52 = sech x tanhz, c = 0. a2 = J,, 
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For the special case J, = I ,  (7.5) yields non-trivial results with Us = 0. It 
turns out that the bounds are then identical with a, defined in (6.1), the best 
result being close to p = 3.5, when a, = 2.191. The exact result for the sinuous 
mode is 2.0; so agreement is again quite good. 

(9)  An example studied by Garcia (see Drazin & Howard 1966, 0 5) is 

J = 3J,sech2xtanh2x ii = tanhx, ( - 0 0  < z < 00)’ 

with J, constant. Result (7.5) now gives 

as < (+ + &J0)P’(2P--1) a, 

for the neutral mode with c, = 0, with a1 given by (6.1). When J ,  = 0, the best 
result is a, < 1-10 as in example (e ) ,  withp = 1.9. Forp = 1 ,2  and corespectively, 
we have the bounds 

<Jo 2 +(as-2), Jo 2 +[($.3,)+-1], J, b + ( 4 - 2 ) ,  

which may be compared with the exact solution for the sinuous mode: 

J = +(a: + a, - 2 ) .  

The results for p = 2 and p = 03, when taken together, yield bounds not too 
distant from the exact result over the whole range of a, and J,. 

The result analogous to (7 .5 )  for semi-infinite flows is identical in form to ( 7 4 ,  
but with the lower limit of integration replaced by 0. This result may be used 
to obtain bounds for the varicose mode with c = 0 and a = a,, since g5 = 0 at 
z = 0 by symmetry for this mode. These bounds are 

a, < (+)1 / (2~-1)  (Q + 1 2 0  J )PK2P--l) a, 

with a, as given by (6.1). When J, = 0, the best result is nearp = 1.3, where the 
bound is a, < 0.784; but, for J, = 0 the exact solution is a, = 0. Porp = 1 ,2  and 
00 respectively, the bounds for this mode are 

(4 2 #(av- I ) ,  Jo > $[(+a$)&- 11, J, 2 $(a$-- 2), 

J, = &(aw + 3). and the exact Eiolution is 

The bounds are somewhat less good for this case than for the sinuous mode. 
Finally, it is perhaps worth noting that the captions in Drazin & Howard’s 

figure 11 (c)  (1966, p. 78)  concerning the regions of stability and instability for 
this example are wrong. For, the sinuous mode is unstable when J, > +(a2 + a - 2) 
and the varicose mode is unstable when J, > +a(a + 3). 

9. Conclusions 
New eigenvalue bounds have been derived for the stability of inviscid homo- 

geneous and stratified flows, separate results applying to flows of infinite, semi- 
infinite and finite extent. For homogeneous flows examples are given which show 
that the upper bounds (4.1a) and ( 4 . 2 ~ )  for the imaginary part ci of the complex 
phase velocity sometimes improve upon the bounds known previously. This is 
particularly likely to be so in cases where one or more of the criteria (iii), (iv) and 
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(vi) of § 1 yields trivial results. For unbounded stratified flows the upper bounds 
(7.4) for ci appear to be rather weak compared with previous known results. 

The upper bounds (5.1) and (5.2) for the wavenumbers of neutrally stable 
disturbances may represent a considerable improvement on results (v)' and (vii) 
of 5 I for homogeneous flows, and the corresponding bounds (7.5) for stratified 
flows appear to have no counterpart in previous work. In  the examples studied, 
bounds within 10% of the known exact solutions were obtained. For anti- 
symmetric velocity profiles, such as example (e), further improvements may be 
made in the bounds for ci by direct integration of the expressions (4.1) and (4.2) 
for disturbances with c, = 0. 

I should like to acknowledge the helpful comments of Professor T.Brooke 
Benjamin of Essex University, and of my colleagues Dr G. M. Phillips, Dr E. R. 
Priest and Mr M. A. Wolfe. 
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